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Network susceptibilities: Theory and applications
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We introduce the concept of network susceptibilities quantifying the response of the collective dynamics of
a network to small parameter changes. We distinguish two types of susceptibilities: vertex susceptibilities and
edge susceptibilities, measuring the responses due to changes in the properties of units and their interactions,
respectively. We derive explicit forms of network susceptibilities for oscillator networks close to steady states
and offer example applications for Kuramoto-type phase-oscillator models, power grid models, and generic flow
models. Focusing on the role of the network topology implies that these ideas can be easily generalized to other
types of networks, in particular those characterizing flow, transport, or spreading phenomena. The concept of
network susceptibilities is broadly applicable and may straightforwardly be transferred to all settings where
networks responses of the collective dynamics to topological changes are essential.
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I. INTRODUCTION

Susceptibility constitutes a key concept in physics, from
statistical mechanics to condensed matter theory and exper-
iments. In these fields, susceptibility quantifies the change
of a systems’ state, typically measured by order parameters,
in response to a change in some external field. In simple
settings, susceptibility is well approximated by linear response
theory and one global order parameter changes in response.
Generally, there can be many order parameters, as for instance
the site-dependent average spin in the theory of magnetism.
While ideal solids are organized in the form of perfectly
periodic crystals with, e.g., nearest-neighbor interactions,
many natural and engineered complex systems are organized
in networks with a rich variety of their underlying interaction
topologies [1,2]. The susceptibility of such a networked
system, i.e., its response to changes in their parameters, is
thus essentially determined by their topology. Furthermore,
unlike in periodic systems the response depends crucially on
the location of the perturbation. Given that there are different
types of local properties that may change, it is not yet clear how
to appropriately define susceptibilities in a networked system
and consequentially what such susceptibilities would tell us
about the collective dynamics.
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In this article we introduce two types of susceptibilities in
network dynamical systems. Focusing on changes to steady-
state operating points, we first systematically study the impact
of small local perturbations of single units and effective inter-
actions in networks. As a key class of network dynamics, we
analyze the susceptibilities of oscillator networks describing
the dynamics of various natural and manmade systems. We
define both vertex susceptibilities and edge susceptibilities
to qualitatively and quantitatively distinguish the responses
to changes of single-unit and single-interaction properties,
respectively. In particular, we reveal how the interaction
topology of the network jointly with the type and location
of the perturbation relative to the response location determine
the response strength. These susceptibilities are shown to be
related to, but not equal to, established measures of network
centrality. Several applications, in particular to Kuramoto
phase oscillator and power grid networks, are discussed. We
specifically identify certain instances of vertex susceptibilities
for electric power grid models as power transfer distribution
factors known in electric engineering. Network susceptibilities
are readily generalizable to all kinds of supply and transport
networks as well as network dynamical systems whose
dynamics exhibits a standard flow structure.

II. NETWORK SUSCEPTIBILITIES

A continuous time network dynamical system can be
described by the equations of motion of N variables (the
“vertices”),

dxi

dt
= Fi(x1,x2, . . . ,xN ; p1,p2, . . . ,pM ), (1)
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where p1,p2, . . . ,pM are tunable. The network interactions
(the “edges”) are defined by which variables xj appear
in the equation of motion of xi . Now we define network
susceptibilities in the following.

Definition 1. Let x∗ = (x∗
1 ,x∗

2 , . . . ,x∗
N ) be a steady state

for a network dynamical system defined by Eq. (1). Suppose
that on applying a small perturbation to one of the network
parameters pk ,

pk → pk + ε, (2)

the fixed point changes by a certain amount,

x∗ → x∗′
(ε). (3)

Then the network susceptibility due to parameter pk is defined
as

χ(pk )→j = lim
ε→0

x∗′
j (ε) − x∗

ε
. (4)

We note that this definition can easily be extended to
dynamics with other invariant sets (e.g., limit cycles) instead
of fixed points, and also to stochastic dynamics.

III. DYNAMICS OF OSCILLATOR NETWORKS

As a cornerstone example we analyze the susceptibility of
a network of coupled oscillators. The celebrated Kuramoto
model [3] characterizes the collective dynamics of a variety
of dynamical systems ranging from chemical reactions [4]
and neural networks [5] to coupled Josephson junctions [6],
laser arrays [7], and optomechanical systems [8]. In the
Kuramoto model, N phase oscillators are coupled via their
phase differences. The rate of change of each phase φj is
given by

dφj

dt
= ωj +

N∑
�=1

Kj� sin(φ� − φj ), (5)

where ωj is the intrinsic frequency of the j th oscillator, j ∈
{1, . . . ,N}, and Kj� = K�j denotes the coupling strength of
two oscillators j and �.

A similar model describes the frequency dynamics of
complex power grids and has gained a strong interest re-
cently [9–14]. The model describes the dynamics of rotating
synchronous generators and motors, representing power plants
and consumers, respectively. Each machine is characterized
by the power it generates (Pj > 0) or consumes (Pj < 0)
and rotates with a frequency close to the grid’s reference
frequency � of 2π × 50/60 Hz, such that its phase is written
as θj (t) = �t + φj (t). The dynamics of the phases is given by
the swing equation [15,16],

Mj

d2φj

dt2
+ Dj

dφj

dt
= Pj +

N∑
�=1

Kj� sin(φ� − φj ), (6)

where Mj is proportional to the moment of inertia and
Dj is proportional to the damping torque of the respective
synchronous machine. This “oscillator model” assumes that
all consumers can be described as synchronous motors with
a nonvanishing inertia Mj . (It should be noted that since the
oscillator model is valid only for the high-voltage transmission

grid, the consumers do not represent individual electrical
devices in each household, but rather whole cities or neighbor-
hoods.) In the “structure-preserving model” used in electric
power engineering [17] one assumes different consumers. In
contrast to a synchronous machine this type of consumer
cannot store any kinetic energy, such that the inertia vanishes.
Hence, the equations of motion of the structure-preserving
model are still given by Eq. (6), but with Mj = 0. In the
oscillator model as well as the structure-preserving model the
power flow from machine k to machine j is given by

Fjk = Kjk sin(φk − φj ), (7)

where Kjk is the maximum transmission capacity, which is
proportional to the susceptance of the respective transmission
line. The relative load of the transmission line is defined
as

Ljk := Fjk

Kjk

= sin(φk − φj ). (8)

The two models admit different forms of synchrony. The Ku-
ramoto model was initially introduced to study the emergence
of partial synchronization when the coupling of the oscillators
is increased [3]. A power grid must be operated in a state of
perfect synchronization: all phase differences φk − φj must be
constant in time to enable a steady power flow [Eq. (7)]. In this
article we analyze how such a phase-locked state responds to a
local change in the network and in particular how this change
depends on the topology of the network.

Transforming to a corotating frame, the phase-locked states
are then just the steady states of Eq. (5) or Eq. (6), respectively,
which are determined by the algebraic equation

0 = Pj +
N∑

�=1

Kj� sin(φ� − φj ), (9)

such that we can treat the Kuramoto model and the power
grid model on the same footing. However, the perspective
of a flow network is particularly helpful in understanding
the mathematical results introduced below. We note that the
steady states do not depend on the mechanical properties of
the individual machines, i.e., the moments of inertia Mj and
the damping coefficients Dj .

IV. LINEAR RESPONSE THEORY AND NETWORK
SUSCEPTIBILITIES

In a complex network there are two general scenarios
for a microscopic change of the dynamical system: (1) the
modification of an edge weight (signifying, e.g., an electrical
transmission line capacity) or (2) the modification of a vertex
property (e.g., the power generation of a power plant) of the
system. In the following, we introduce a linear response theory
for both scenarios.

A. Perturbation at a single edge

In the first scenario we consider the coupling matrix Kij

being perturbed slightly to yield the new perturbed matrix K ′
ij ,
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which differs from Kij only at a single edge (s,t):

K ′
ij = Kij + κij , (10)

κij =
{
κ for (i,j ) = (s,t) and (i,j ) = (t,s)
0 all other edges. (11)

This perturbation causes the steady-state phases of the network
to change from φj to φ′

j . The new steady-state Eq. (9) now
reads

0 = Pj +
N∑

i=1

K ′
ij sin(φ′

i − φ′
j ), (12)

∀ j ∈ {1, . . . ,N}. (13)

In the following we calculate this perturbation within a
linear response theory. We note that the steady state is defined
only up to a global phase shift. Throughout this article we fix
this phase such that

∑
j φj = 0.

We expand the steady-state condition Eq. (13) to leading
order in κij and

ξj := φ′
j − φj , (14)

and subtract Eq. (9), to obtain

0 =
N∑

i=1

κij sin(φi − φj ) +
N∑

i=1

Kij cos(φi − φj )(ξi − ξj )

= κLst (δjs − δjt ) −
N∑

i=1

Ajiξi (15)

for all j = 1, . . . ,N using the Kronecker symbol δ. In the
last step we have used the definition of the flow Eq. (7), the
definition of relative load Eq. (8), and the perturbation matrix
Eq. (11). Furthermore, we have introduced the matrix

Aij :=
{−K̃ij for i �= j

+∑
� K̃�j i = j

, where

K̃ij := Kij cos(φi − φj ). (16)

In a short-hand vectorial notation, Eq. (15) then reads

Aξ = κLst q(st), (17)

using the vector q(st) ∈ RN with the components

q(st),j = (δs,j − δt,j ). (18)

We note that the matrix A is singular such that it cannot be
inverted. However, the vector q is orthogonal to the kernel of
A, which is spanned by the vector (1,1, . . . ,1)T such that this
is no problem. In order to formally solve Eq. (17) we can thus
use the Moore-Penrose pseudoinverse of A, which we will call
T := A+ in the following. Thus, we find

ξ = κLst T qst . (19)

The perturbed flow Eq. (7) over an edge (i,j ) is then given by

F ′
ij = (Kij + κij ) sin(φj − φi + ξj − ξi)

= Kij sin(φj − φi) + κij sin(φj − φi)

+Kij cos(φj − φi)(ξj − ξi), (20)

up to first order in κ and ξ . Using Eq. (19), this result reads

F ′
ij = Fij + κLst [(δisδjt − δjsδit )

+ K̃ij (Tjs − Tjt − Tis + Tit )]. (21)

B. Edge susceptibilities

Depending on the application we want to measure different
effects caused by the perturbation at the edge (s,t). First, we
quantify how much the phase of a single oscillator j is affected
by the edge-to-vertex susceptibility, using Eq. (19),

χ(st)→j := lim
κ→0

φ′
j − φj

κ
= Lst (Tjs − Tjt ). (22)

To measure the change of the oscillator state on a global scale in
response to perturbation at a single edge, we define the global
edge susceptibility as the norm of the local susceptibilities

χ2
(st) := lim

κ→0

∑
j |φ′

j − φj |2
κ2

=
N∑

j=1

χ2
(st)→j = L2

st

N∑
j=1

(Tjs − Tjt )
2 . (23)

For applications to flow networks, such as the power grid
model Eq. (6), we are especially interested in how the flows
change as this determines the stability of the grid. In particular,
stability can be lost when a single edge becomes overloaded.
Thus, we define the edge-to-edge susceptibility as the change
of flow at another edge,

η(st)→(ij ) := lim
κ→0

F ′
ij − Fij

κ
. (24)

Using Eq. (21) this relation reads

η(st)→(ij ) = Lst [(δisδjt − δjsδit )

+ K̃ij (Tjs − Tjt − Tis + Tit )]. (25)

We conclude that the effects of a perturbation at a single
edge (s,t) as measured by the susceptibilities defined above
are proportional to the load of edge Lst . We note that this
edge susceptibility formalism can be used to detect [18] the
phenomenon of Braess paradox, where the flow at the most
loaded edge (i,j ) increases on increasing the coupling strength
of one edge (s,t). To be precise, Braess paradox will occur on
increasing the coupling strength at edge (s,t) if the edge-to-
edge susceptibility of the most loaded edge (i,j ) and the flow
at that edge has the same sign,

η(st)→(ij )Fij > 0. (26)

Furthermore, the susceptibilities are essentially given by the
matrix T , the pseudoinverse of A. The properties of these
matrices will be analyzed in detail in the following sections.

C. Perturbation at a single vertex

The above calculations can be readily generalized to
analyze the change of the steady state in response to a local
perturbation of a single vertex property. To this end we consider
a change of the power injected at a single vertex s. However,
a steady state of Eq. (6) exists only if the power is balanced
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such that we consider a small perturbation of the power vector
of the form

P ′
j = Pj + p (δj,s − 1/N). (27)

Expanding the definition of a steady state to leading order in
p and ξj := φ′

j − φj then yields

0 = p (δj,s − 1/N) +
N∑

i=1

K̃ij (ξi − ξj )

= p (δj,s − 1/N) +
N∑

i=1

Aij ξi . (28)

Solving this equation for the changes ξ yields

ξ = p T rs , (29)

with the vector rs ∈ RN whose components are given by

rs,j = δs,j . (30)

D. Vertex susceptibilities

In analogy to the case of a perturbed edge discussed in
Sec. (IV B) we define the vertex-to-vertex susceptibility as

χs→j := lim
p→0

φ′
j − φj

p
= Tjs, (31)

the global vertex susceptibility as

χ2
s :=

N∑
j=1

χ2
s→j =

N∑
j=1

T 2
js, (32)

and the vertex-to-edge susceptibility as

ηs→(ij ) := lim
p→0

F ′
ij − Fij

p
= K̃ij (Tjs − Tis). (33)

We note that measures similar to the vertex-to-vertex sus-
ceptibility χs→j are used in electric power engineering where
they are called power transfer distribution factors [19,20]. In
this context one generally uses a fixed reference or slack node,
which absorbs the power change p, such that Eq. (27) is
modified to

P ′
j = Pj + p (δj,s − δj,slack). (34)

E. Properties of the matrix A

We have shown that the response of a network to a local
perturbation is essentially given by the matrix T , which is
the Moore-Penrose pseudoinverse of the matrix A defined
in Eq. (16). Before we discuss the potential applications of
the network susceptibilities we thus have a closer look at the
properties of the matrix A.

The matrix A encodes the dynamical stability and syn-
chrony of steady states [21,22]. A steady state of the Kuramoto
model or the power grid model defined by Eq. (6) is
dynamically stable if and only if A is positive semidefinite,
i.e., all its eigenvalues aj ,1 � j � N are nonnegative. For the
sake of simplicity we fix the ordering of the eigenvalues such
that 0 = a1 � a2 � a3 � . . . aN . We have to take into account
that A always has one eigenvalue a1 = 0. The corresponding

eigenvector is (1,1, . . . ,1), signifying that a small perturbation
that is exactly the same in all phase angles is neutrally stable.
However, this is merely due to the steady state itself being
arbitrary up to a constant global phase shift. Stable steady
states can emerge or disappear when a system parameter is
varied through an (inverse) saddle node bifurcation at which
one eigenvalue vanishes, a2 → 0.

In particular, A is positive semidefinite if the relation
cos(φi − φj ) > 0 holds for all edges (i,j ) of the network and
the network is globally connnected. Stable steady states that
do not satisfy this relation typically exist only at the edge of
the stable parameter region [21]. We can thus assume that
during normal operation we always have cos(φi − φj ) � 0 for
all edges such that we can use the following relations:

cos(φi − φj ) =
√

1 − sin(φi − φj )2 � 0

⇒ K̃ij = Kij cos(φi − φj ) =
√

K2
ij − F 2

ij . (35)

The expression K̃ij can be understood as the free capacity of
an edge (ij ), which can be used to respond to the perturbation
and is thus referred to as the responsive capacity.

For normal operation, cos(φi − φj ) � 0 for all edges (i,j ),
the nondiagonal entries of the matrix A are all nonpositive such
that A is a Laplacian matrix for which many properties are
known [2]. In particular, the eigenvalues of a Laplacian matrix
satisfy 0 = a1 � a2 � · · · � aN , where a2 is an algebraic
measure for the connectivity of the underlying network [23,24].

V. SUSCEPTIBILITY AND CONNECTIVITY

A. Scaling properties of network susceptibilities

The susceptibilities are especially large in the limit of a
weakly connected network. For a power grid this corresponds
to the scenario of high loads when the responsive capacities
K̃ij become small. In the following we analyze this case in
detail for a perturbation at a single edge (s,t) [cf. Eq. (11)].
The case of a vertex perturbation is discussed briefly at the end
of this section.

Throughout this section we assume the case of “normal”
operation; i.e., we assume that K̃ij � 0 for all edges (i,j ).
Then the matrix A is a Laplacian matrix with eigenvalues
0 = a1 � a2 � · · · � aN and the associated eigenvectors vn.
We can then formally solve Eq. (17) for ξ with the result

ξ = κLst

N∑
n=2

1

an

(vn · qst )vn. (36)

The term n = 1 does not contribute since we have fixed the
global phase such that

∑
j ξj = 0. This expression shows four

important properties of the network susceptibility:
(1) The response ξ and thus also the edge susceptibilities

scale with the load of the perturbed edge Lst = Fst/Kst . For
a complete breakdown of an edge (s,t), we have κ = −Kst ,
such that ξ scales with the flow Fst of the defective edge.
The scenario of a complete breakdown is further discussed in
Sec. VII.

(2) The prefactors 1/an decrease with n. In particular
for a weakly connected network the algebraic connectivity
a2 becomes very small [2,23,24], such that the term n = 2
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dominates the sum. Then the susceptibility of all edges in the
network scale inversely with the algebraic connectivity a2. This
proves our claim that the susceptibility is large if the network
defined by the responsive capacities K̃ij is weakly connected.

(3) For a weakly connected network, the edge susceptibility
scales with the overlap |v2 · qst |, where v2 is the so-called
Fiedler vector. This overlap can be interpreted as a measure
of the local algebraic connectivity of the nodes s and t . To
see this, note that the Fiedler vector can be used to partition
a graph into two weakly connected parts [2,24]. The overlap
with the vector qst is largest if the two nodes s and t are in
different parts and thus weakly connected.

(4) In the limit of a disconnected network the response ξ

to a perturbation at the edge (s,t) diverges if the edge links
the weakly connected components. If the perturbation occurs
within one component, then the response remains finite. This
will be shown in detail in the following section.

(5) The global edge susceptibility defined in Eq. (23) can
be expressed as

χ2
(st) = L2

st

N∑
n=2

(vn · qst )

a2
n

, (37)

where we have used Eq. (36) for the phase response. This
quantity measures the average phase response to the perturba-
tion of a single edge (s,t). An example is shown in Fig. 1 for a
synthetic power grid model based on the topology of the British
high-voltage grid. One observes that the global susceptibility
of an edge (s,t) is essentially determined by the load Lst , the
connectivity of the network, and the location of the edge within
the network. Edges are highly susceptible if they are heavily
loaded or connect two components of the grid. In the shown
example we observe two highly susceptible edges connecting

the northern part to the rest of the grid. Averaging the global
susceptibilities χst over all edges (s,t) in the network, we find
an almost perfect proportionality with the inverse algebraic
connectivity 1/a2. If the transmission capacity K of the edges
increases, the algebraic connectivity a2 also increases and the
grid becomes less susceptible to perturbations.

B. The weakly connected limit

To obtain a more quantitative understanding of the sus-
ceptibility in a weakly connected network we assume that
the network is decomposed into two components of size
N1 and N2 = N − N1, respectively. In the limit of complete
disconnection, the Laplacian matrix also decomposes

A(0) =
(

A
(0)
1 0

0 A
(0)
2

)
, (38)

with A
(0)
1 ∈ RN1×N1 and A

(0)
2 ∈ RN2×N2 . As usual for a Lapla-

cian matrix the lowest eigenvalue vanishes, a1 = 0, and the
associated eigenvector is given by

v1 = 1√
N

(1,1, . . . ,1)T . (39)

In the disconnected limit also the second eigenvalue (the
algebraic connectivity) vanishes, a

(0)
2 = 0. The associated

eigenvector, the Fiedler vector, is given by

v
(0)
2 = 1√

N
(
√

N2/N1, . . .︸ ︷︷ ︸
N1 times

,−
√

N1/N2, . . .︸ ︷︷ ︸
N2 times

)T . (40)

Here and in the following the superscript (0) denotes the
limiting case of a complete disconnection of the network. For
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FIG. 1. The global edge susceptibility χ(st) in a model power grid. (a) Coarse-grained topology of the British high-voltage power transmission
grid [9,25]. We randomly choose 60 nodes to be generators with Pj = +1 (�) and 60 nodes to be consumers with Pj = −1 (◦). The transmission
capacity of all edges is given by K = 4 in arbitrary units. The color map shows the load |Lst | of each edge. (b) Color map plot of the global
edge susceptibility χst . (c) For a given network, the susceptibility is approximately proportional to the load of the edge |Lst |. It is increased
if the edge (s,t) couples two weakly connected components of the responsive capacity graph K̃ , indicated by a large overlap with the Fiedler
vector |qst · v2| (shown as a color code and in the inset). (d) On a global scale, the average susceptibility is proportional to the inverse algebraic
connectivity 1/a2. The plot shows 1/a2 (�, right scale) and the ratio χst/|Lst | averaged over all edges (◦, left scale) as a function of the
transmission capacity K . The shading shows the standard deviation of χst/|Lst |.
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simplicity we assume that the two components are not further
disconnected, such that a

(0)
3 > 0.

To analyze the case of a weakly connected network, we
consider a single weak link at position (c,d) between the two
components. The Laplacian is then given by A = A(0) + A′,
with

A′
cd = A′

dc = −k, A′
cc = A′

dd = +k, (41)

and A′
ij = 0 otherwise. The connection strength k of the edge

(c,d) is assumed to be small, such that we can calculate
the eigenvalues and eigenvectors using Rayleigh-Schrödinger
perturbation theory (see, e.g., Ref. [26]). We then find the
algebraic connectivity,

a2 = k
N1 + N2

N1N2
+ O(k2), (42)

and the Fiedler vector,

v2 = v
(0)
2 + k

√
N1 + N2

N1N2

N∑
n=3

(
v(0)

n · qcd

)
a

(0)
n

v(0)
n + O(k2),

(43)
where qcd is defined as in Eq. (18).

To calculate the response of the network ξ we need the
overlap of the vector qst [see Eq. (36)] with the eigenvectors
of A, in particular the overlap with the Fiedler vector. The result
depends crucially on the location of the perturbed edge (s,t).
If this edge connects the two components, i.e., (s,t) = (c,d),
we find

v2 · qst =
√

N1 + N2

N1N2
+ O(k), (44)

such that the response diverges as k−1:

ξ = κLst

k

√
N1N2

N1 + N2
v

(0)
2 + O(k0). (45)

If the edge (s,t) lies within one component, then

v2 · qs,t = k

√
N1 + N2

N1N2

N∑
n=3

(
v(0)

n · qcd

)(
v(0)

n · qst

)
a

(0)
n

+ O(k2),

such that the response remains finite in the limit k → 0:

ξ = κLst

√
N1N2

N1 + N2

N∑
n=3

(
v(0)

n · qcd

)(
v(0)

n · qst

)
a

(0)
n

v
(0)
2

+ κLst

N∑
n=3

(
v(0)

n · qst

)
a

(0)
n

v(0)
n . (46)

For a perturbation at a single vertex as defined in Eq. (27)
the response will always diverge in the limit k → 0. Assuming
without loss of generality that the perturbed vertex s is an
element of the component 1 we find that

ξ = p

k

N2

N1N2
(N2/N1, . . . ,N2/N1︸ ︷︷ ︸

N1 times

,−1, . . . , − 1︸ ︷︷ ︸
N2 times

)T (47)

to leading order.

VI. APPLICATIONS

A. The relation to centralities

Various centrality measures have been defined to quantify
the importance of single vertices and edges in complex
networks [27]. Centrality measures based on current flows [28]
are heavily used in different areas of network science and are
directly related to susceptibility measures as defined in the
present article. To illustrate this, consider a network of ohmic
resistors with conductances Gij . An electrical current flows
through the network with I source

j being the current in- or outflow
at vertex j . The current through a particular edge (i,j ) of the
network is given by the voltage drop across the edge, such that

Iji = Gji(Vj − Vi). (48)

At each vertex the current is conserved such that Kirchhoff’s
law,

N∑
i=1

Iji =
N∑

i=1

Gji(Vj − Vi) = I source
j , (49)

is satisfied for all j = 1, . . . ,N . Defining the Laplacian matrix
of the conductances (the so-called nodal conductance matrix),

Aij :=
{ −Gij for i �= j

+∑
� G�j i = j

, (50)

and its Moore-Penrose pseudoinverse T := A+, the voltages
are given by

V = T I source. (51)

For the definition of centrality measures [27] one considers
the situation that a unit current flows into the network at a
single vertex s and out at a different vertex t . Then we have
the voltages,

Vj = Tjs − Tjt , (52)

and the current flowing over the edge (i,j ) is given by

Iji = Gji(Tjs − Tjt − Tis + Tit ). (53)

The current flow betweenness centrality of an edge (i,j ) is
then defined as the absolute current flowing through the edge
averaging over all scenarios of the in- and outflow, i.e., all pairs
(s,t) [27]:

b(i,j ) := 2

N (N − 1)

∑
s<t

Gji |Tjs − Tjt − Tis + Tit |. (54)

Correspondingly, the betweenness centrality of a vertex j is
defined as

bj := 1

N (N − 1)

∑
s<t

N∑
i=1

Gji |Tjs − Tjt − Tis + Tit |

=
N∑

i=1

1

2
b(i,j ). (55)

We directly see the analogies to the definition of the network
susceptibilities if we identify the conductance Gij with the
responsive capacity K̃ij . In particular, the edge betweenness
centrality defined in Eq. (54) coincides with the average of the
normalized edge-to-edge susceptibility ηst→ij /|Ls,t | except
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for a slight difference in the term (s,t) = (i,j ) that vanishes as
1/N2.

However, in this article we generalize the idea of centralities
based on current flow in several ways. First of all, we consider
two different scenarios for the in- and outflow of the network:
First, for the edge susceptibilities we consider an inflow at
vertex s and outflow at vertex t with strength Lst as in Ref. [27],

I source
j = Lst (δjs − δst ). (56)

Second, for the vertex susceptibilities we assume a unit inflow
at vertex s and equal outflow at all other vertices, such that

I source
j = δjs − 1

N
. (57)

Third, we analyze not only the change of the flows, as in the
edge-to-edge susceptibilities, but also the change of the state
variables ξj , which correspond to the voltages in the resistor
networks. In this sense, the global susceptibilities χ2

(st) and
χ2

s are given by the variance of the voltages in the network.
Therefore, they quantify the global response of the network to
a local in- or outflow in terms of the average variation of all
voltages.

B. Relation to resistance distances

In a manner similar to Sec. VI A, the concept of suscep-
tibilities can be understood in terms of resistance distance,
which is defined as follows. As in the previous section we
consider a network of Ohmic resistors with conductances Gij

and suppose a unit current enters the node s and exits through
node t . Then the resistance distance Rst is given by the voltage
drop between the nodes s and t . Using the relation Eq. (52),
this yields

Rst = Vs − Vt = Tss − 2Tst + Ttt , (58)

using the symmetry of the matrix T . This relation can be
inverted with the result [29]

Tij = −1

2
Rij + 1

2N

(
Rtot

j + Rtot
i

) −
∑

i,j Rij

N2
, (59)

where we have defined Rtot
i = ∑

j Rij .
Substituting Eq. (59) into Eqs. (19) and (31), we can express

all susceptibilities equivalently in terms of the matrix T or the
resistance distances. For the vertex-to-vertex susceptibility we
find

χs→t = −1

2
Rst + 1

2N
Rtot

s + 1

2N
Rtot

t , (60)

and subsequently the global average of susceptibilities take the
simple form ∑

t �=s

χs→t = 1

2

∑
i,j

Gij − 1

N
Rtot

s . (61)

This relation clearly demonstrates that nodes that are on an
average “close” to the rest of the network (i.e., with high
centrality values), tend to have higher global susceptibility.

In a similar manner, the vertex-to-edge susceptibilities can
be expressed as

ηs→(i,j ) = K̃ij

{
−1

2
(Rsi − Rsj ) + 1

2N

(
Rtot

i − Rtot
j

)}
, (62)

and the edge-to-vertex susceptibility follows an almost identi-
cal form, apart from the prefactor:

η(i,j )→s = Lij

{
−1

2

(
Rsi − Rsj

) + 1

2N

(
Rtot

i − Rtot
j

)}
. (63)

The global edge susceptibilities are given by (derivation in the
Appendix)

χ2
(ij ) = NL2

st

4

⎧⎨⎩ 1

N

∑
s

(Rsi−Rsj )2 −
[

1

N

∑
s

(Rsi − Rsj )

]2
⎫⎬⎭.

(64)

C. Scaling with distance

The effect of a linear perturbation generally decays with
distance. To obtain a better understanding of this decay,
we consider a continuum version of the linear response
theory, concentrating on the vertex-to-vertex susceptibility. We
consider a two-dimensional square lattice with equal weights,
as power grids are naturally embedded into a two-dimensional
plane and most grids can be assumed to be approximately
planar. In the continuum limit the Laplacian matrix tends to
the two-dimensional Laplace operator and Eq. (28) becomes a
Poisson equation,

�ξ (x) = pδ(x − x0), (65)

where ξ (x) is the local response at position x (e.g., the local
phase angle), p is the power injection, which occurs at position
x0, and � is the 2D Laplace operator. The solutions to this
equation are well known. On an infinite two-dimensional
domain it is

ξ (x) = p

2π
ln(|x − x0|) + b, (66)

where b is a constant of integration. Generally, no unique
notion of Euclidean distance between nodes exists for net-
works. The closest analog is the shortest path distance, denoted
by d(s,t) in the following, which is related to the Euclidean
distance, for instance, in regular grids. Figures 2(a) and 2(b)
show the decay behavior in a uniform square grid, compatible
with the continuum results.

Realistic network topologies are more complicated as
shown in Figs. 2(c) and 2(d). We computed the susceptibility
of the Continental European Transmission Network [30] to
perturbing one vertex for two cases of free capacities K̃ . First,
we obtained realistic values K̃ij,real from Ref. [30], then we
considered a uniform model in which all free capacities are
replaced by the average K̃ij,unif = 〈K̃real〉. In the vicinity of
the perturbation, monotonic decay can be seen in both cases.
However, there exist several vertices in the periphery of the
network that are much more susceptible than the rest for
realistic free capacities [dark blue in Fig. 2(c)]. These vertices
are highly susceptible independent of the perturbed vertex.

Analogously to the case of vertex perturbation, the effects
of edge perturbations can also be solved in the continuum limit,
the result being the same as the potential due to an electrical
dipole:

ξ (x) ∝ q · x
|x − x0|2 , (67)
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FIG. 2. The Vertex-to-vertex susceptibility in uniform and realis-
tic network topologies. (a) Color coded plot of χs→t in a 256 × 256
square grid with uniform free capacities, showing logarithmic decay.
The central vertex s was perturbed. (b) Decay behavior of the mean
χs→t in the same topology as in (a) as a function of shortest path
distance d(s,t). The shaded region represents a 95% confidence
interval. We clearly see logarithmic decay. (c) Color coded plot of
χs→t in the Continental European Transmission Network topology
with realistic free capacities (taken from Ref. [30]). The vertex
positions are not realistic. One central vertex was perturbed. There
are several highly susceptible vertices in the network periphery (dark
blue). (d) Decay behavior of the mean χs→t in the same topology as
in (c) as a function of d(s,t). We show both realistic free capacities
K̃ij,real as well as uniform free capacities K̃ij,unif = 〈K̃real〉 set to the
mean realistic value. The same vertex as in (c) was perturbed. In the
realistic case, few highly susceptible vertices in the network periphery
lead to a high variance at large distances, in contrast to the uniform
case.

where q is the unit vector in the direction along which the
perturbed edge lie.

This equation shows that unlike the response to vertex
perturbation, the response to edge perturbation in a network
will be highly directional. The susceptibilities should decay
the fastest in the direction along the edge perturbed, according
to the power law d−2, consistent with the results presented in
Ref. [31], but much slower in the orthogonal direction. In
Figs. 3(a) and 3(c), we see this direction dependence in a
regular square lattice. The lower envelope of the distance-
susceptibility plot decays approximately as d−2 as expected.

We repeat the same analysis on the Continental European
Transmission Network. We see that the susceptibilities are
spread even wider for constant distance, indicating a stronger
dependence on the orientation of the edge. We notice that the
upper envelope in Fig. 3(d) decays very slowly: ≈d−0.4, i.e.,
there exists a small but nonzero number of nodes that are
heavily affected by the perturbation, despite being very far
away from the perturbed edge.

D. Explaining the vulnerability of dead ends

The topology of a supply network determines its lo-
cal [12,32] as well as global stability [9,10,33]. Recently,
Menck et al. have shown that dead ends are particularly prone
to instabilities [34]. They have measured the robustness of

FIG. 3. The edge-to-vertex susceptibility in uniform and realistic
network topologies. (a) Color coded plot of χ(s,t)→j in a 256 × 256
square grid with uniform free capacities. The central edge ((128,128),
(128,129)), where the numbers are integer coordinates, was perturbed.
(b) Decay behavior of χ(st)→j in the same topology as in (a) as a
function of shortest path distance d(s,j ). The decay has a wide spread
due to direction dependence as explained in Ref. (67). (c) Color coded
plot of χ(st)→j in the Continental European Transmission Network
topology with uniform free capacities (taken from Ref. [30]). The
vertex positions are not realistic. One central edge was perturbed. (d)
Decay behavior of χ(st)→j in the same topology as in (c) as a function
of d(s,j ). The same edge as in (c) was perturbed. The susceptibilities
for a single distance are even more widely distributed than in a regular
lattice . The straight lines in (b) and (d) are algebraic fits to the
upper and lower envelopes of the data set to obtain the exponent
of the power-law decay. As the power-law decay breaks down near
the boundary due to finite-size effects, we have to choose a cutoff,
restricting the fit to the shaded region.

a power-grid model to large perturbations at a single node in
terms of the so-called basin stability. To this end, the dynamics
is simulated after a random perturbation to the steady state at a
single node of the network. The basin stability is then defined
as the probability that the network relaxes back to the steady
state. Extensive Monte Carlo studies show that nodes adjacent
to a dead end or dead tree have a particularly small basin
stability.

The particular sensitivity of dead ends is directly related
to the vertex-to-vertex susceptibility introduced in Sec. IV D.
The main mechanism causing desynchronization at a dead
end is shown in Fig. 4. The generation or power injection Ps

at a vertex s adjacent to a dead end is increased for a short
period of time. This perturbation has a strong influence on the
vertex s itself but also at the dead end t , causing a transient
loss of synchrony. For longer times, the vertex s relaxes and
resynchronizes with the rest of the network, whereas the dead
end t does not. In summary, a perturbation at the vertex s has
a large influence on the dynamics of the dead end, while its
influence on the bulk of the network is small.

This property if directly mirrored by the vertex-to-vertex
susceptibility χs→j . Generally, the susceptibility is largest
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FIG. 4. Large susceptibility and desynchronization at dead ends.
(a) The edge susceptibility χs→j is large for j = s and j = t , where
t is the dead end adjacent to the vertex s. (b, c) Dynamics after a
transient increase of the power Ps at the vertex s. The impact of the
perturbation is strongest for the vertices s and t . While s relaxes after
a short transient period, the dead end t loses synchrony permanently.
We consider the topology of the British high-voltage transmission
grid as in Fig. 1, of which only a magnified part is shown. We assume
that the moments of inertia Mj ≡ M and the damping coefficient
Dj ≡ D are the same for all machines. The machines have power
injections of Pj/M = ±1 s−2 and all edges have the transmission
capacity K/M = 4 s−2 and D/M = 0.1 s−1.

locally, i.e., for j = s, while it decreases with the distance
as discussed above. Only if s is adjacent to a dead end t ,
the nonlocal susceptibility χs→t is comparably large. One
particular example is shown in Fig. 4(a). This shows that the
nonlocal impact is strongest at dead ends and thus provides an
explanation for their low basin stability.

VII. LARGE PERTURBATIONS AND STRUCTURAL
DAMAGES

A. From small to large changes

Linear response theory readily predicts how the flow in
a network changes after a small perturbation of the network
topology. But can it be used to estimate the effects of major
changes such as the complete outage of an edge? This is
especially important for electric power grids, where transmis-
sion line failures repeatedly induce large-scale outages (see,
e.g., Refs. [35–41]). Thus, any method that helps to predict
the stability of a grid after the failure of a single edge is
extremely valuable. For an ad-hoc analysis of network stability
in practical applications such methods should be only based
on the topological and load properties of the original network
and avoid time-consuming direct numerical simulations.

We can treat macroscopic changes within a linear response
approach if we slightly modify the derivation of edge suscepti-
bilities introduced in Sec. IV A. As before we keep only terms
linear in ξ but we drop the assumption that the perturbations
κij are small. Then Eq. (15) has to be modified as

N∑
i=1

(Kij + κij ) cos(φi−φj )(ξi − ξj )

= −
N∑

i=1

κij sin(φi − φj ). (68)

This set of linear equations is rewritten in matrix form as

A(st)ξ = κLst q(st), (69)

with the matrix

A(st) = A + κ cos(φs − φt ) q(st)qT
(st), (70)

where the superscript T denotes the transpose of a vector or
matrix. The change of the local phases is then obtained by
formally solving Eq. (69),

ξ = κLstA
+
(st)q(st). (71)

In particular, we will need the phase differences between two
nodes, which is given as

ξj − ξi = κLst qT
(ji)A

+
(st)q(st). (72)

This expression suggests that we need to calculate the inverse
separately for each edge (s,t) if we want to assess the impact
of all possible edge failures. However, we can greatly simplify
the problem using the Woodbury matrix identity [42], which
yields

A+
(st) = (

A + κ cos(φs − φt ) q(st)qT
(st)

)+

= A+ − A+q(st)
(
κ−1 + qT

(st)A
+q(st)

)+
qT

(st)A
+.

We then obtain

qT
(ji)A

+
(st)q(st) = qT

(ji)A
+q(st)

1 + κ cos(φs − φt ) qT
(st)A

+q(st)
. (73)

The network flows after the perturbation are now given by

F ′′
ij = Kij sin (ϕj − ϕi + ξj − ξi)

= Fij + Kij cos (ϕj − ϕi)(ξj − ξi)

= Fij + K̃ij κLst qT
(ji)A

+
(st)q(st)

= Fij + κLst K̃ij (Tjs − Tjt − Tis + Tit )

1 + κ cos(φs − φt ) (Tss − Tst − Tts + Ttt )
,

for all edges (i,j ) �= (s,t). This expression differs from
Eq. (21) only by the denominator, which tends to one in the
limit of small perturbations κ → 0. For a macroscopic pertur-
bation the denominator is essential to predict the magnitude of
the flow changes correctly. The complete failure of an edge is
described by κ = −Kst , such that we obtain

F ′′
ij = Fij − K̃ij (Tbs − Tbt − Tas + Tat )

1 − K̃st (Tss − Tst − Tts + Ttt )
× Fst , (74)

for all edges (i,j ) �= (s,t) and F ′′
st = 0 for the failed edge.

Similar formulas are used in power engineering, where the
fraction is referred to as a line outage distribution factor
(LODF) [19,43].

An example of how the damage of a single transmission
line affects the flows in a power grid is shown in Fig. 5.
We plot the change of the flow magnitude |Fij | predicted
by the simple linear response approach, Eq. (21), and the
modified approach, Eq. (74), in comparison to the actual
value obtained from a numerical solution of the steady-state
condition, Eq. (9). For a small damage where only 10% of
the transmission capacity is lost (κst = −0.1 × Kst ) we find a
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simple linear response

(b) change of flow after complete outage of a single edge
modified linear reponse numerically exact

−0.1

−0.05

0

0.05

0.1

−0.1

−0.05

0

0.05

0.1

−0.1

−0.05

0

0.05

0.1

−1

−0.5

0

0.5

1

−3

−1.5

0

1.5

3

−3

−1.5

0

1.5

3

FIG. 5. Change of flow magnitudes |Fij | after (a) the damage (κ = −0.1 × Kst ) or (b) the complete outage (κ = −Kst ) of a single edge
(dashed). We compare the prediction of simple linear response approach, Eq. (21), and the modified formula, Eq. (74), to the results of a
numerical solution of the steady-state condition, Eq. (9). Note the different color scales used in the figure. We consider the topology British
high-voltage transmission grid as in Fig. 1, of which only a magnified part is shown.

very good agreement between the predicted and actual values
as expected. But even in a complete breakdown, the modified
formula, Eq. (74), provides a very good prediction of the
flow changes after the damage. The simpler linear response

formula, Eq. (21), strongly underestimates the flow changes
as it neglects the denominator 1 − K̃st (Tss − Tst − Tts + Ttt ),
which is significantly smaller than the one in the current
example.
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FIG. 6. Identification of critical edges using linear response theory. We analyze the effects of the breakdown of a single transmission line
for two examples marked by arrows. (a–c) In the upper example, no secondary overloads occur and the grid relaxes back to steady operation
after a short transient period. (d–f) In the lower example, linear response theory predicts a secondary overload (black dashed line in d), and
consequently the dynamics becomes unstable, as shown in panel (f). (a, d) Loads |F ′′

ij /Kij | predicted by the modified linear response formula,
Eq. (74). (b, e) Actual load obtained by solving the steady-state condition, Eq. (9). In (e) no steady state exists after the initial breakdown. (c, f)
Grid dynamic obtained after the breakdown of the respective edge at t = 0. We consider the topology of the British high-voltage transmission
grid as in Fig. 1, of which only a magnified part is shown. We assume that the moments of inertia Mj ≡ M and the damping coefficient
Dj ≡ D are the same for all machines. The machines have power injections of Pj/M = ±1 s−2 and all edges have the transmission capacity
K/M = 4 s−2 and D/M = 0.1 s−1.
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B. Identification of critical edges

The modified formula, Eq. (74), can be used to predict
impeding overloads and large-scale outages in complex supply
networks [44]. Figure 6 shows the effect of the breakdown of a
single transmission line for two examples. In the first example,
Eq. (74) predicts that no overload occurs in agreement with
the direct solution of the steady-state condition, Eq. (9). Thus,
we expect that the grid relaxes to a new steady state after the
failure of the respective edge. This prediction is confirmed
by a direct numerical simulation of the equations of motion,
Eq. (6). In the second example, Eq. (74) predicts that further
overloads occur, i.e., that |F ′′

ij /Kij | > 1 for at least one edge
(i,j ), after the transmission line (s,t) failed. Indeed, numerical
simulations show that no steady state solution of Eq. (9) exists
and that the grid becomes unstable and looses synchrony. In the
following, we call an edge “critical” if its breakdown induces
a desynchronization of the grid. If the grid relaxes back to a
steady operation, i.e., an attractively stable synchronized state
with φ̇j = 0 for all j , we call the edge “stable.”

Based on these results we propose to use the maximum load
max(i,j ) |F ′′

ij /Kij | predicted by the modified linear response
formula, Eq. (74), as a criterion to infer network stability. An
edge (s,t) is predicted to be “critical” or “stable” according to
the following classification system:

max
(i,j )

|F ′′
ij /Kij | > h ⇒ predicted to be critical,

(75)
max
(i,j )

|F ′′
ij /Kij | � h ⇒ predicted to be stable,

where h is a threshold value. Bridges, i.e., edges whose
removal disconnects the grid are always predicted to be critical.

To test this method, we perform direct numerical sim-
ulations of the equations of motion, Eq. (6), for a large
number of test grids, each starting from a stationary state of
normal operation and study the influence of the breakdown
of a single edge. Examples for both scenarios are shown in
Fig. 6. We analyze the coarse-grained structure of the British
high-voltage transmission grid [9,25], which has 165 edges.
We consider 100 random realizations with random generator
positions, thus testing 16 500 edges in total. For each out
of 100 random realizations, we fix the network topology
by randomly selecting half of the nodes to be generators
(Pj = +1 P0) and the others to be consumers (Pj = −P0),
with P0 = 1 s−2. The transmission capacity of all edges is
fixed as Kij = K0 = 4 s−2. One example of such a network
is depicted in Fig. 1. Networks not supporting a steady state
before any edge breakdown were discarded.

To evaluate the performance of the proposed classification
scheme, Eq. (75), we must first define the possible outcomes
of a prediction, where we distinguish between two different
kinds of prediction errors:

True positive: edge is predicted critical and is critical;
False positive: edge is predicted critical but is stable;
False negative: edge is predicted stable but is critical;
True negative: edge is predicted stable and is stable.
Generally, it is impossible to rule out both false-negative

and false-positive predictions such that a compromise must be
achieved. In the current setting, the number of false-positive
predictions can be minimized by choosing a high value of

h, while the number of false-negative predictions can be
minimized by choosing a small value of h.

A quantitative assessment of the performance of a classifiers
is then provided by a receiver operating characteristics (ROC)
curve (Fig. 7) [45]. Here, the true-positive rate of the test, also
called the sensitivity,

SEN

:= no. of true-positive predictions

no. of true-positive pred. + no. of false-negative pred.
,

is plotted versus the false-positive rate,

FPR

:= no. of false-positive predictions

no. of false-positive pred. + no. of true-negative pred.
,

for different threshold values h. For a perfect classifier, the
ROC is a point at (FPR,SEN) = (0,1), while for a fully random
classification the ROC curve is a straight line with slope 1
through the origin. Therefore, a classifier is judged to be the
better the nearer the ROC curve approaches the point (0,1),
i.e., the upper left corner of the plot.

Numerical results for 100 realization of the British grid
with random generator positions are shown in Figs. 7(c)
and 7(d). It is observed that the the classifier Eq. (75) closely
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FIG. 7. Performance of different classifiers for the prediction
of critical edges. (a, b) Histograms of characteristic quantities to
identify critical (thin red line) and stable (thick blue line) edges in
complex supply networks: (a) load |Lst | before breakdown and (b)
the maximum load max(i,j ) |F ′′

ij /Kij | predicted by linear response
theory. (c, d) The performance of the classifiers can be judged by a
receiver operating characteristics (ROC) curve, where the sensitivity
is plotted vs. the false-positive rate for different threshold values h.
The predicted max. load (solid green line) closely approaches the
perfect limit (0,1) and clearly outperforms a classifier based on the
load |Lst | (dashed). Results are collected for 100 realizations of
the British grid with random positions of generators and consumers.
One realization is shown in Figs. 5 and 6.
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approaches the perfect limit (FPR,SEN) = (0,1) and clearly
outperforms a classifier based on the load of the edges.
Therefore, linear response theory provides a very promising
approach to identifying critical infrastructures in complex
supply networks.

VIII. CONCLUSION AND OUTLOOK

In summary, we introduced the concepts of vertex suscep-
tibilities and edge susceptibilities as measures of responses
to parametric changes in network dynamical systems. They
qualitatively distinguish—and quantify—the responses due to
changes in the properties of units and their interactions, respec-
tively. Focusing on steady-state responses of oscillator network
characterized by phases or phases and their velocities, we
derived explicit forms of such network susceptibilities. We in
particular analyzed the role of irregular interaction topologies
as those are the least investigated compared to the susceptibili-
ties that are standard in physics. Specifically, we have analyzed
how the responses of a network in some given phase-locked
state depend on the relative location of perturbation and
response sites and how the network topologies enter. We
linked susceptibilities to established measures, for instance,
special cases are known as line outage distribution factors in
power-grid engineering and susceptibilities are closely related
to centrality measures. We explicated an accurate prediction
of network responses not only to small perturbation but also
after the full breakdown of edges. In power grids, this may
be applied, for instance, for an ad hoc security assessment.
Furthermore, network susceptibilities directly reveal weak

points of flow networks and may thus be used in the planning
and design of future grid extensions and establishing other
supply network infrastructures. Finally, the two types of
network susceptibilities are generic measures of responses
to parameter changes and as such may be straightforwardly
generalized across flow, transport, and supply networks as
well as other network dynamical systems where responses are
nonlocal due to genuine collective dynamics.

ACKNOWLEDGMENTS

We gratefully acknowledge support from the Federal
Ministry of Education and Research (BMBF Grant No.
03SF0472A-E), the Deutsche Forschungsgemeinschaft (DFG
Grant No. ME-1332/19-1), the Helmholtz Association (via
the joint initiative “Energy System 2050—A Contribution of
the Research Field Energy” and the Grant No. VH-NG-1025
to D.W.) and the Max Planck Society to M.T. The works
of D.M., H.R., and X.Z. are supported by the International
Max-Planck Research School on Physics of Biological and
Complex Systems, Göttingen.

D.M. and M.R. contributed equally to this work.

APPENDIX: GLOBAL EDGE-TO-VERTEX
SUSCEPTIBILITY IN TERMS OF RESISTANCE DISTANCE

We start with Eq. (59),
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